
IBM TJ Watson Research Center - Advanced Compiler Technologies

Towards a portable OpenMP data
sharing implementation for NVIDIA
accelerators in the CLANG/LLVM
toolchain

Gheorghe-Teodor Bercea

IBM Research

Team members:
Carlo Bertolli, Hyojin Sung,
Arpith C. Jacob, Alexandre Eichenberger,
Tong Chen, Kevin O’Brien.

DoE CoEPP Workshop ‘17IBM

What this talk is about
❖ Introducing a new, “upstream-able” data sharing scheme for

CLANG/LLVM trunk (not to be confused with the current
implementation).

❖ In the current talk we cover only the first level of sharing:
from one thread in an OpenMP team to the rest of the
threads in the team.

❖ Overcoming the problem that:

“In certain use cases, OpenMP’s default sharing of local
variables is incompatible with the default allocation into

local memory of local variables on NVIDIA GPUs.”
2

DoE CoEPP Workshop ‘17IBM

Mapping OpenMP to GPUs

3

void test(){

 int c = 5000;

 #pragma omp target

 {

 c += 1;

 #pragma omp parallel for

 for (i) {

 A[i] = c * i;

 }

 }

}

OpenMP allows nesting of regions with different numbers of threads.

DoE CoEPP Workshop ‘17IBM

Mapping OpenMP to GPUs

4

void test(){

 int c = 5000;

 #pragma omp target

 {

 c += 1;

 #pragma omp parallel for

 for (i) {

 A[i] = c * i;

 }

 }

}

1 thread

all threads

OpenMP
semantics

DoE CoEPP Workshop ‘17IBM

Mapping OpenMP to GPUs

5

void test(){

 int c = 5000;

 #pragma omp target

 {

 c += 1;

 #pragma omp parallel for

 for (i) {

 A[i] = c * i;

 }

 }

}

1 thread

all threads

We need to
share “c”

DoE CoEPP Workshop ‘17IBM

Mapping OpenMP to GPUs

6

void test(){

 int c = 5000;

 #pragma omp target

 {

 c += 1;

 #pragma omp parallel for

 for (i) {

 A[i] = c * i;

 }

 }

}

1 thread

all threads

Default NVPTX
backend policy:
“c” is allocated
onto the thread

local stack

DoE CoEPP Workshop ‘17IBM

Mapping OpenMP to GPUs

7

void test(){

 int c = 5000;

 #pragma omp target

 {

 c += 1;

 #pragma omp parallel for

 for (i) {

 A[i] = c * i;

 }

 }

}

1 thread

all threads

On GPUs threads cannot share a variable allocated on the local stack.

Default NVPTX
backend policy:
“c” is allocated
onto the thread

local stack

DoE CoEPP Workshop ‘17IBM

Function outlining
❖ In general: OpenMP regions delimited by different

constructs will be outlined.
❖ The master thread assigns those regions to workers

dynamically: we therefore avoid dynamic thread launch
in favour of dynamic work allocation to existing threads.

❖ Outlining ensures that all parallel OpenMP regions have
access to all the worker threads including OpenMP regions
that are defined in other compilation units.

❖ Data must be shared across multiple functions.
8

DoE CoEPP Workshop ‘17IBM

OpenMP outlined regions example

9

void test(){

 int c = 5000;
 #pragma omp target
 {
 c += 1;

 #pragma omp parallel for
 for (i) {
 A[i] = c * i;
 }

 c += 2;
 }
}

MASTER

WORKERS

MASTER

DoE CoEPP Workshop ‘17IBM

Changes to CLANG and the runtime

❖ The runtime maintains a list of references to the shared
variables.

❖ The MASTER region needs to initialize this list.
❖ The WORKER region retrieves the list from the runtime and

passes the arguments to the outlined parallel region (in the
expected order).

10

DoE CoEPP Workshop ‘17IBM

Mapping OpenMP to GPUs

11

void test(){

 int c = 5000;
 #pragma omp target
 {
 c += 1; // LLVM-IR: %c = alloca i32

 #pragma omp parallel for
 for (i) {
 A[i] = c * i;
 }

 c += 2;
 }
}

allocated in the
MASTER thread’s

local memory by default,
BUT

must now be
“shareable”

with the WORKERS!

1. In the CUDA model shared variables must be explicitly declared as __shared__.
2. On a GPU, variables allocated in local memory cannot be shared.

DoE CoEPP Workshop ‘17IBM

Changes to LLVM’s NVPTX Backend
• There are 4 alternative ways for lowering a shared variable:

- lower alloca to local memory - no sharing needed;

- lower alloca to shared memory - one instance of the shared
variable per team, store variable in shared memory stack,
limited by shared memory size;

- lower alloca to global memory - one instance per team but in
global memory, no more team-level management of the
variable, vulnerable to recursive functions;

- lower alloca to runtime-managed memory - use a global
memory stack managed by the runtime, supports all cases,
interactions with runtime are expensive.

12

Global Memory

Shared Memory Shared Memory Shared Memory

%c

%c

%c …

MasterWorkers

%c

%c

%c …

MasterWorkers

%c

%c

%c …

MasterWorkers

Team Team Team

Global memory Shared memory Local memory

No Sharing

Global Memory

Shared Memory Shared Memory Shared Memory

shared_args

shared_args

shared_args …

%c

MasterWorkers

shared_args

shared_args

shared_args …

%c

MasterWorkers

shared_args

shared_args

shared_args …

%c

MasterWorkers

Team Team Team

Global memory Shared memory Local memory

Shared Memory Scheme

Runtime managed

DoE CoEPP Workshop ‘17IBM

Change address space
• Introduce a new LLVM-IR pass which will recognize the cases where an

alloca should use shared memory instead of local. Detection condition:
- if an alloca has its address taken i.e. the alloca address is stored

• Insert two address space cast instructions from generic to shared and
from shared to generic.

15

%a = alloca i32

…

store i32* %a, i32** %2

%a = alloca i32
%1 = addrspacecast 0 to 3
%2 = addrspacecast 3 to 0

…

store i32* %a, i32** %2

DoE CoEPP Workshop ‘17IBM

Use a shared stack

❖ We need to change some of NVPTX’s passes over the
LLVM, Machine Instruction and PTX intermediate
representations:
• Introduce a new depot in the prologue of the kernel

function for the allocation of shared variables.
• Introduce a shared stack pointer which mimics the way

the local stack pointer is set up in the entry block.

16

DoE CoEPP Workshop ‘17IBM

Use a shared stack

17

❖ Extend lowering of alloca’s to shared memory:
• SP for generic address space operations.
• SPL for local address space operations.
• SPSH for shared address space operations.

kernel() {
.local .align 8 .b8 __local_depot[10]
.shared .align 8 .b8 __shared_depot[10]

mov.u64 %SPL, __local_depot
mov.u64 %SPSH, __shared_depot
cvta.local.u64 %SP, %SPL
cvta.shared.u64 %SP, %SPSH

add.u64 %rd1, %SPSH, 8
ld.shared.u64 %rd2, [%rd1]
…

} PTX

DoE CoEPP Workshop ‘17IBM

Propagate use of shared stack pointer

18

%vreg25<def> = LEA_ADDRi64 <fi#3>, 0;
%vreg6<def> = cvta_to_shared_yes_64 %vreg25<kill>;

%vreg25<def> = LEA_ADDRi64 %VRShared, 32;
MI - IR

MI - IR

❖ Add a new pass to the NVPTX that will lower the frame
index of shared values to the shared stack pointer (SHSP).

❖ This pass operates on the internal representation of NVPTX
(MI - Machine Instruction).

DoE CoEPP Workshop ‘17IBM

Putting it all together
❖ Addition of a shared memory scheme compatible with the

current code generation scheme:
• we modified the runtime to share values from MASTER to

WORKER threads.
• we modified CLANG’s code generation to support our

data sharing convention.
❖ Sharing relies on variables being stored in a “shareable”

memory address space on the device:
• we modified LLVM’s NVPTX Backend to support the

lowering of shared variables to the GPU’s shared
memory.

19

DoE CoEPP Workshop ‘17IBM

Limitations & future work
❖ Limitations of the new data sharing scheme:

• No communication from CLANG to LLVM about OpenMP:
CUDA and OpenMP offloading share the same toolchain,
distinguish between the two.

• Shared memory is limited: adopt one of the more generic
sharing alternatives for cases in which shared memory is
insufficient or inefficient due to occupancy.

• Support for recursive functions
• Support second level of sharing among WORKERS:

currently the new data sharing infrastructure only supports
sharing from MASTER to WORKERS.

❖ These limitations do not apply to the current data sharing scheme.
20

Thank you for listening!
Questions?

Global Memory

Shared Memory Shared Memory Shared Memory

shared_args

shared_args

shared_args …

%a

MasterWorkers

shared_args

shared_args

shared_args …

MasterWorkers

shared_args

shared_args

shared_args …

MasterWorkers

Team Team Team

Global memory Shared memory Local memory

Future Work: Global Memory Scheme

Runtime managed

%b %c %a %b %c %a %b %c

DoE CoEPP Workshop ‘17IBM

Future work: sharing among workers

23

void test(){
 int c = 5000;
 #pragma omp target
 {
 c += 1;
 #pragma omp parallel for
 for (i) {
 int d;
 d = c * i;
 #pragma omp simd
 for (j) {
 B[j] = d * j;
 }
 }
 c += 2;
 }
}

